Step of Proof: less-fast-fib
11,40
postcript
pdf
Inference at
*
1
2
1
I
of proof for Lemma
less-fast-fib
:
1.
n
:
2. 0 <
n
3.
a
,
b
:
.
3.
{
m
:
|
3. {
k
:
.
3. {
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib((
n
- 1)+
k
))}
4.
a
:
5.
b
:
6.
b@0
:
.
6.
{
m
:
|
6. {
k
:
.
6. {
(
a
+
b
= fib(
k
))
6. {
((
k
0)
(
b@0
= 0))
6. {
((0 <
k
)
(
b@0
= fib(
k
- 1)))
6. {
(
m
= fib((
n
- 1)+
k
))}
{
m
:
|
{
k
:
.
{
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(
n
+
k
))}
latex
by InstHyp [
a
] (-1)
latex
1
: .....wf..... NILNIL
1:
a
2
:
2:
7. {
m
:
|
2: 7. {
k
:
.
2: 7. {
(
a
+
b
= fib(
k
))
2: 7. {
((
k
0)
(
a
= 0))
2: 7. {
((0 <
k
)
(
a
= fib(
k
- 1)))
2: 7. {
(
m
= fib((
n
- 1)+
k
))}
2:
{
m
:
|
2:
{
k
:
.
2:
{
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(
n
+
k
))}
.
Definitions
x
:
A
.
B
(
x
)
origin